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Two methods of localization of Frost-model molecular orbitals are considered, both of which 
are extremely easy to apply, requiring the evaluation of only one-election integrals. The charge- 
localization criterion can be used with any single-determinant wavefunction, but when applied to the 
Frost model it yields similar orbitals to those got by orthonormalizing the basis of floating spherical 
gaussians, while maintaining their localized feature. Properties of charge-localized orbitals are 
calculated for NH3, H20, CH4, C2H 6. 
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1. Introduction 

It has now become a standard technique to find Hartree-Fock wave functions 
for molecules. Sometimes these wave functions are computed to high accuracy 
using large basis sets but, for some purposes, it may be sufficient to make calcu- 
lations of a low degree of accuracy. For  example, Frost-model calculations [1-4] ,  
which employ a minimum basis set of floating spherical gaussians, can only give 
about  80-90% of the exact Hart ree-Fock energy but nevertheless they can 
provide useful information on relative, if not absolute, values of energies and other 
observables as well as giving insights into chemical behaviour. 

High-accuracy calculations do not always allow for a simple interpretation 
although ways are known of transforming the computed wave functions into 
forms which correspond to chemical ideas. One of the most useful such trans- 
formations is to a Slater determinant built up of localized orbitals [5-8],  these 
localized orbitals conforming to the chemist's ideas of inner-shells, lone-pairs, 
covalent bonds. Apart  from the qualitative aspects of these localized orbitals 
there are two quantitative advantages which they have. The first is that they are 
transferable from molecule to molecule in the sense that, for example, the localized 
orbital for a CH bond in methane is nearly the same as that for a C H  bond in 
ethane. The second is that they provide a useful starting point when Hartree-Fock 
perturbation theory is applied to finding first and second-order properties of 
molecules. Recently, for example, dipole and quadrupole moments  of CC and CH 
bonds have been calculated using energy-localized orbitals found from quite 
accurate Hart ree-Fock wave functions [9] and two of us have used the same 
localized orbitals to find polarizabilities of CC and C H  bonds [10]. 
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In this paper we investigate how well such properties can be calculated using 
the much less accurate Frost-model wave functions. As a preliminary the wave 
function has to be transformed into a Slater determinant built up of orthogonal 
localized orbitals. The key word here is orthogonal; a Frost-model wave function 
is normally written as a Slater determinant of spherical gaussians which are 
certainly localized but are not orthogonal and unfortunately this means that 
standard Hartree-Fock perturbation theory cannot be used. There is, as it happens, 
no great problem in transforming to an orthogonal localized set to which 
Hartree-Fock perturbation theory can be applied. In fact we find that two 
choices of localized orbitals, charge-localized and what we term Frost-localized 
are particularly easy to obtain and use. From them we obtain first and second- 
order molecular properties that to some extent are satisfactory but that also have 
consistent errors which are due to the nature of the Frost model. 

2. Charge-Localized Orbitals 

All localization criteria are based on the fact that the Hartree-Fock wave 
function 

is invariant to a unitary transformation of the orthonormal orbitals {4'r} [-5, 6]. 
Thus if we define a new set of orbitals {Zi} by 

where U is unitary, then 

For the new set {Zi} to be localized in various regions of space U should be chosen 
to maximize a sum of the form: 

Z~ ~(. Z~(1)Z2(2)f(r~)d~2 

where f(r l2 ) is a monotonic function of r12. Different choices of f ( r l2  ) will lead to 
different localized orbitals but it is generally thought that these differences will 
not be too important. 

Ruedenberg [-7] has mentioned several possible choices of f(rx2 ) of which 
the most well-known one is f(r12)=r-lz 1. This has frequently been used to find 
localized orbitals and, provided this is done as an additional stage of a Hartree- 
Fock calculation, there is no problem in applying it. On the other hand, when 
the process of localization is performed long afterwards on a given set of canonical 
molecular orbitals, the fact that Coulomb and exchange integrals are needed 
makes the calculation difficult and time-consuming. 

Alternative choices of f ( r l2  ) which do not have this problem are f(rlz)=r2 z 
and f(rt2)=6(r~2) since, for these, the integrals required are one-electron only. 
The first of these, f(rlz)=r~z, is related to the Boys' localization method [6, 111 
while the second gives charge-localized orbitals. 
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The charge density corresponding to kg is given by 

~(1)= 2 ~ s  I~s(1)l z = 2  y,~ Izi(1)l 2 . 

Consequent ly Iq~s(1)] 2 will be the charge density associated with an original 
orbital q~ while [Zz(1)] 2 will be the charge density for the localized orbital gz. 
If the {~b~} are the canonical molecular orbitals they are usually delocalized 
throughout the molecule and so the same will be true of the associated charge 
density. On the other hand, localized orbitals should have localized charge 
densities. Consequently the charge-overlap 

Iz~(1)12l)~j(1)l 2 dz 

between the charge densities of two localized orbitals should be small. This 
leads to the condition that the unitary transformation U should be chosen so 
that 

~i , j  ~ [Zz(1)I2IZj(1)r 2dv 

is a minimum. An equivalent alternative form of this condition is that the sum of 
the self overlaps of the charge densities should be as large as possible i.e. 

is a maximum. 
Charge-localized orbitals have been defined implicitly by Edmiston and 

Ruedenberg [5] and investigated in more detail by yon Niessen [12]. In particular 
the latter author has shown that, for a number of atoms and molecules, charge- 
localized orbitals are similar to other types of localized orbitals e.g. those obtained 
by Boys' method. Von Niessen has also pointed out that the integrals needed to 
find charge-localized orbitals are much simpler and, therefore, easier to calculate 
than those needed for most of the other localization methods. 

3. Application to the Frost Model 

The basis for the Frost model [1-4] is a minimal set of floating spherical 
gaussians. The basis functions are allowed to moves centres and alter exponents 
until the energy is minimum. It is typical to find a spherical gaussian with a large 
exponent sited on a heavy nucleus and a gaussian with a small exponent on the 
axis of a single bond. Thus the basis functions already represent inner-shells 
and bonds. Lone pairs present some difficulties as functions placed in the lone- 
pair region are inclined to crash into the heavy nucleus if allowed to float. It is 
usual in this case to fix the lone-pair gaussian near the nucleus and just let the 
exponents vary. 

Although the basis functions of the Frost model are localized they are not 
orthogonal, making comparison with other localized molecular orbitals difficult. 
Such a set can be orthogonalized, for example, by the Gram-Schmidt procedure. 
Alternatively, if the Frost-model calculation is made by utilizing an optimizing 
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iterative SCF program (such as OPIT [13]) the program will automatically give 
orthogonal molecular orbitals which are the best approximation to the true 
canonical molecular orbitals obtainable using the basis set of gaussians. In this 
case the orthogonal orbitals can then be localized by standard methods. 

It is particularly easy to find charge-localized orbitals from Frost-model 
calculations because the integrals required are trivially easy to compute [12]. 
Applying the standard iterative procedure of Edmiston and Ruedenberg [5] 
it is found that the most complicated integral required is 

0)1(0( , R1, 1)C02(fi, R 2 ,  1)c03(7, R3, 1)c04(3, R 4 ,  l ) d z  

where, for example, 601 is a spherical gaussian with exponent e centered at the 
point R1. The well-known result that the product of two spherical gaussians is 
itself a spherical gaussian can be used to find the value of the integral which is 

n / ;  exp(#R �9 R -  ~ R  1 �9 R 1 - f i R  2 �9 R 2 - y R  3 �9 R 3 - (SR 4 �9 R4) 

where 

#=c~+fl+7+~5 and t ~ R = o ; R I + f l R 2 + y R a + 6 R 4 .  

The results of applying the iterative procedure to finding the charge-localized 
orbitals for a number of Frost-model wave functions are given in the next section. 
What is found is that the charge-localized orthonormal orbitals {;(~} are localized 
in the same regions of space as the non-orthogonal floating gaussian orbitals 
{m~}. This suggests an alternative and extremely simple method for finding 
orthogonal localized orbitals for the Frost model. Namely we choose X~ to be the 
orthogonal combination of the {c@ which is least changed from the gaussian 
orbital co~. This is done by a transformation 

where, in order that the {Xi} be orthonormal, the matrix A must satisfy 

A + S A  = 1 

with S the overlap matrix given by, 

S i j  = ~ coio~jdz  . 

The localization criterion is that 

be a minimum. It has been shown [14] that A =S -} is the choice of A which 
minimizes D (see also Ref. [5]). 

These Frost-localized orbitals are clearly very easy to find and, as will be 
seen, they are very similar to charge-localized orbitals. Their disadvantage is that 
they are special to the Frost model and have no analogues for more complicated 
wave functions, but we only use them here to compare with the charge-localized 
orbitals which are of general applicability. 
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4. Results 

Both methods of localization were applied to Frost-model wave functions 
of methane, water, ammonia and ethane and from the localized orbitals first 
and second-order bond properties have been obtained. There are several reasons 
for the choice of these particular molecules. One is their general importance and 
the fact that methane and ethane provide the prototype CH bond and CC single 
bond while water and ammonia enable us to consider lone pairs. Secondly, 
values of bond dipole moments, quadrupole moments and polarizabilities 
calculated from quite accurate wave functions for these molecules are available 
for comparison with our values found from the much less accurate Frost-model 
wave functions. Finally, since the Frost model seems to work best for hydrocarbons 
the results for methane and ethane can be used to estimate the degree of accuracy 
to be expected of calculations of this type in the most favourable case while the 
unfavourable case is covered by the results for ammonia and water, where the 
Frost model works somewhat badly. 

We find that for the two types of localization the two sets of coefficients in the 
expansion of the orthonormal molecular orbitals over the basis set spherical 
gaussians are very alike in all four cases, indicating that the charge-localized 
orbitals are indeed localized. Due to the similarity of the pairs of results we have 
only listed both matrices of coefficients for ammonia, which is a typical case 
(Table 1). The main difference between the two sets of localized orbitals is that S ~ 
is symmetrical, and thus that for the Frost-localized orbitals some coefficients 
not intrinsicly related by molecular symmetry are forced to be equal. The optimized 
floating-spherical-gaussian bases of methane and ethane are nearly the same, 
and, as is to be expected, so are the localized orbitals for the CH bond and carbon 
inner-shell in both molecules. Both sets of charge-localized orbitals are reproduced 
in Table 2, most of the molecular orbitals being omitted since they are generated 

Table  1. Loca l ized  orbi ta ls  of a m m o n i a  

Basis funct ion A t o m i c  o rb i t a l  coefficients 

N i.s. NH~ N H  2 N H  3 Nl.p. 

(a) Charge- loca l ized  
N - 1.0135 0.0401 0.0401 0.0401 0.0864 
N H  1 - 0.0100 - 1.5370 0.1384 0.1384 0.7571 
N H  2 - 0 . 0 1 0 0  0.1384 - 1.5370 0.1384 0.7571 
N H  3 - 0.0100 0.1384 0.1384 - 1.5370 0.7571 
Nl.p. 0.1127 0.6038 0.6038 0.6038 - 2.5539 

(b) Fros t - loca l ized  

N - 1.0158 0.0145 0.0145 0.0145 0.0839 
N H  1 0.0145 - 1.5659 0.1095 0.1095 0.7055 
N H  2 0.0145 0.1095 - 1.5659 0.1095 0.7055 
N H  3 0.0145 0.1095 0.1095 - 1.5659 0.7055 
Nl.p. 0.0839 0.7055 0.7055 0.7055 - 2.4756 

G e o m e t r y :  N H  bond  l e n g t h =  1.91 a.u.; H N H  a n g l e = 9 7  ~ 
F loa t ing  spher ica l  gauss ians :  exponen t s  13.0046, 0.4309, 0.3965; 
0.8914 a.u. a long  N H ;  0.2224 off N, away  f rom H. 

pos i t ions  0.0007 off N, towards  H ;  
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Table  2. Charge- loca l ized  orbi ta ls  of me thane  and  e thane  

Basis funct ion me thane  e thane  

C i.s. CHa C i.s. C H  x CC 

C i.s.1 - 1.0108 0.0494 - 1.0104 0.0490 0.0449 
C i.s. 2 - 0.0004 - 0.0060 0.0449 
CC 0.0278 0.1954 - 1.3240 
CH,  0.0254 - 1.2057 0.0259 - 1.1877 0.1637 
C H  2 0.0254 0.1864 0.0259 0.1817 0.1637 
C H  3 0.0254 0.1864 0.0259 0.1817 0.1637 
C H  4 (0.0254) (0.1864) - 0.0072 - 0.0504 0.1637 
C H  s - 0.0072 - 0.0074 0.1637 
C H  6 - 0.0072 - 0.0074 0.1637 

(a) M e t h a n e : g e o m e t r y :  C H  l e n g t h = 2 . 0 6 6 5  a.u.; f loat ing spher ica l  gauss ians :  exponents  
9.3072, 0.3562, pos i t ion  in C H  bonds  = 1.2362 a.u. f rom C. 

(b) E thane :  geomet ry :  C H  l e n g t h = 2 . 0 8 2 5  a.u.; CC l e n g t h = 2 . 9 1 5 9 ;  f loat ing spherical  gauss ians :  
exponents  9.3006, 0.3531, 0.3549; pos i t ion  in C H  b o n d s =  1.2716 a.u. f rom C. 

by symmetry. The similarity of the CH bond in both environments is underlined 
by the closeness of the CH values of the electric properties of bonds which we 
now proceed to consider. 

The electric moments for the bonds are defined in the following way: 
The charge density of the ith bond is 

~i(r) = ~ Z~,6(R~- v ) -  2o9*(r)~oi(r) 

where Z,i is the nuclear charge contribution to the ith orbital from the eth 
nucleus. Following England and Gordon [-15] and Pritchard and Kern [9], two 
units of charge are associated with each localized orbital, the charge being evenly 
divided among the nuclei associated with the orbital. 

The bond dipole moment is thus 

t~i = <~i(r)r> 

and the bond quadrupole moment is 

0 i = (Qi(r~(3rr- r z I)>. 

The last definition depends on choice of origin (unless the dipole moment 
vanishes); to conform with the work of Pritchard and Kern the origin is taken 
to be the midpoint of the two nuclear charges associated with the orbital. The 
principal components of these vector and tensor quantities are listed in Table 3. 

The bond contributions to molecular properties cannot be compared directly 
with experimental data, but a number of conclusions may be drawn by comparison 
within the theoretical data. One evident feature of the bond results is that the 
figures for the CH bond in methane and the CH bond in ethane are very nearly 
identical, which is precisely what is intuitively expected. The dipole moments of the 
CH, NH, and OH bonds are negative, indicating the electronegativity of the 
hydrogen nucleus, and appear to be in the correct order, decreasing with increasing 
heavy nuclear charge. The dipole moments of the lone pairs in ammonia and water 
are of similar magnitude with the oxygen lone pair rather closer to the nucleus. 
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M o l e c u l e / O r b i t a l  D i p o l e  m o m e n t s  a'b Q u a d r u p o l e  m o m e n t s "  

Th i s  p a p e r  O t h e r  calcs. 

Th i s  p a p e r  O t h e r  calcs. [1 • 11 • 

C H  4 C H  - 2.08 - 2.02 [ 1 9 a ]  2.19 - 1.09 1.32 - 0 . 6 6  [ 1 9 a ]  

- 1 . 8 6  [ 1 7 ]  

- 2.03 [15]  

C 2 H  6 C H  - 2 . 1 7  - 1.97 [-9] 2.21 - 1.11 1.33 - 0 . 6 6  [9]  
- 1.84 [17 ]  1.43 - 0 . 7 2  [ 1 9 b ]  

- 1 . 9 5  [ 1 5 ]  

- 1.87 [19b] 
C C  0 0 5.28 - 2.64 4.09 - 2.04 [9]  

4.45 - 2 . 2 3  [ 1 9 b ]  

H 2 0  O H  - 0.55 - 1.03 [19c ]  1.84 - 0.92 c 0.91 - 0.46 [19c~ 
O 1.p. - 3.40 - 2.88 [19c ]  - 1.35 0.68 c - 1.07 0.54 [19c]  

N H  3 N H  - 1.03 - 1.24 [ 1 9 d ]  1.70 - 0 . 8 Y  1.18 - 0 . 5 9  [ 1 9 d ]  
N 1.p. - 3.93 - 3.32 [ 1 9 d ]  - 2.03 1.01 - 1.57 0.79 [ 1 9 d ]  

a Un i t s  : d ipo le  = debye ;  q u a d r u p o l e  = b u c k i n g h a m .  
b The  pos i t ive  d i r ec t ion  is def ined  to  be  f r o m  the  h e a v y  nuc leus  o u t w a r d s  so that ,  for  example ,  

# c u =  - 2.08 impl ies  C + H  - .  

A v e r a g e  value .  

There have been a number of previous calculations of CC and CH bond dipole 
moments and quadrupole moments. For example, Pritchard and Kern [9] have 
found bond moments by using the localized orbitals obtained from the Pitzer 
and Lipscomb [16] wave function for ethane. Rothenberg [17] has calculated 
bond dipole moments as have England and Gordon [15], the former using 
ab initio wave functions while.the latter authors have used semi-empirical ones. 
These values are listed in Table 3 where they can be compared with the results 
obtained using the Frost-model wave functions. It is clear from the table that, 
although the Frost-model bond dipole moments are a little too large, they are, 
on the whole, in very satisfactory agreement with the more accurate values. 
The quadrupole moments are less satisfactory being quite appreciably too large 
in magnitude. It is plausible that the diffuse nature of the floating spherical 
gaussians is the cause of this error, which can be expected to get worse for higher 
moments. 

It should be pointed out that these CH bond dipole moments are much larger 
than earlier calculations, for example that of Coulson [18], have suggested. 
The analysis of Ref. [9] makes it fairly clear that these earlier calculations are 
in error due to inadequate wave functions but there then remains the problem 
of reconciling these large bond dipole moments found theoretically with experi- 
mental evidence which indicates, although far from decidedly, that the value of the 
CH dipole should be of the order of 0.4 debyes. A number of suggestions have been 
made as to how this might be done [17] but the question is far from settled and 
in the present situation it seems best to use the definition of bond moment given 
here and used by earlier authors [9, 15] with the understanding that it must be 
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modified in some way before it can be compared with "observed" bond dipoles 
whatever they may be. As well as results for CC and CH bonds Table 3 gives the 
moments of OH, NH bonds and oxygen and nitrogen lone pairs. We also give in 
the table values of the same moments we have calculated using the more accurate 
Slater basis wave functions [19] localized with the "self-energy" criterion [5]. 

The results of Table 3 indicate that the only really satisfactory agreement is 
obtained for the dipole moment of the CH bond, which is about - 2. The values 
for the bonds and lone pairs (axis through centroid) in H20 and NH3 show much 
more departure from the other calculations. This is not surprising because the 
floating spherical gaussians, which determine the bond dipole moments by their 
positions along the bonds, do not behave well when forced to simulate lone 
pairs, which adversely affects the moments of both the bonds and the lone pairs. 
NH 3 is not so badly affected as H/O. All the quadrupole moments show only 
crude agreement with the more accurate calculations, reflecting the diffuse 
nature of the spherical-gaussian charge distributions. 

The calculation of the electric polarizabilities was made using a form of 
uncoupled Hartree-Fock perturbation theory described elsewhere [10,20]. 
Because of the nature of the Frost model in its use of spherical gaussians, the 
localized orbitals are themselves almost spherically symmetric. As a consequence 
the components of the polarizability tensor are found to be almost isotropic 
which, of course, is not actually the case. This is shown in Table 4 where we give 
polarizability values calculated from accurate wave functions [ 19] for comparison 
with the Frost-model ones. It is clear from the table that the main fault with the 
Frost-model results is that the parallel components of the bond polarizabilities 
are almost always very much underestimated. The perpendicular components 
on the other hand are quite satisfactory. The net result of this is that the average 
bond polarizability for CC and CH bonds is underestimated by about 25 %. 
For the other bonds a similar effect is observed, but the discrepancy is much larger. 
The polarizability of the lone pairs, on the other hand, appears to be greatly 
overestimated. 

Using the bond moments and polarizabilities it is possible to obtain dipole 
and quadrupole moments and polarizabilities for the molecules themselves. 

Table 4. Bond polarizabilities of charge-localized orbitals in the Frost model 

Molecule Orbital  Polarizabilities a 

This paper Wave functions of Ref. [19] 

t[ • II • 

CH4 CH 4.63 4.99 8.41 4.51 
C2H ~ CH 4.58 4.98 8.68 4.87 

CC 4.07 4.54 7.19 3.81 
H 2 0  OH 2.10 1.87 b 7.65 3.56 b 

O 1.p. 2.54 " 1.75 b 1.01 1.14 b 

NH 3 NH 3.20 3.27 u 8.11 4.27 b 
N 1.p. 3.45 3.25 1.74 1.74 

" Units of 10 -25 C.C. b Average value. 
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Table 5. Molecular properties from charge-localized orbitals 
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Molecule Theoretical Experimental Error as % of Ref. for 
experimental exp, 

(a) Dipole moment 
HzO 2.54 
NH 3 2.34 

(b) Quadrupole moment 
C2H 6 -- 1.19(11) 

H20 ~ 

NH3 ~ 

1.82 40 % a 
1.47 59 % a 

-0.8 • 
0.60(• 0.4 +0.1 
0.54, - 0.05(11) - 0.13 _+ 0.03 
3.04, 3,34(L e) 2.63 _+0.02 

- 3.58, - 3.29(• - 2.50 +0.02 
- 2.91, - 3.45(11) - 2.32_+0.07 

1.46, 1.73(1) 1.16 _+0.04 

(c) Polarizabilities 
CH 4 19.49 25.6 24 % g 
CzH 6 33.46 44.7 25 % h 
H20 7.92 14.4 45% J 
NH 3 13.07 22.2 41% h 

units as in Tables 3, 4. 
McClellan, A.L.: Tables of experimental dipole moments. San Francisco: Freeman 1963. 

u Buckingham, A.D., Disch, R.L., Dunmur, D.A.: J. Am. Chem. Soc. 90, 3104 (1968). 
The first column contains values referred to the heavy atom; the second values are referred to the 
molecular centre of mass. 

a Rock, S.L., Pearson, E.F., Appleman, E.H., Norris, C.L., Flygare, W.H.: J. Chem. Phys. 59, 3940 
(1973). 

~ Component perpendicular to axis and parallel to HOH plane. 
f Kukolich, S.G.: Chem. Phys. Letters 5, 401 (1970). 
g Watson, H.E., Ramaswanny, K.L.: Proc. Roy. Soc. 156A, 144 (1936). 
h Bridge, N. J., Buckingham, A. D.: Proc. Roy. Soc. 295A, 334 (1966). 
J Hawkins, D, Moskowitz, J.W., Stillinger, F.: J. Chem. Phys. 53, 4544 (1970). 

These  figures are g iven in  T a b l e  5 where  some  c o m p a r i s o n  wi th  e x p e r i m e n t  is 
made .  D u e  to the  spher ica l  s y m m e t r y  of the  gauss i ans  the po la r i zab i l i ty  a n i s o t r o p y  
of the molecu les  will be zero in  each  case which,  of  course,  is incorrec t .  The  average  
po la r izab i l i ty ,  however ,  is p red ic t ed  n o n e  too  b a d l y  at  least  for C H  4 a n d  C2H6. 
F o r  wa te r  a n d  a m m o n i a  the ca l cu la t ed  average  po la r i zab i l i ty  is on ly  a b o u t  50 % 
of  the e x p e r i m e n t a l  value,  b u t  t h i s  seems as m u c h  a special  difficulty assoc ia ted  
wi th  the lone  pai rs  in  these molecu les  as a faul t  of  the F r o s t  m o d e l  itself: ca l cu la t ions  
based  o n  accu ra t e  H a r t r e e - F o c k  wave  func t ions  also give p o o r e r  resul ts  for 
molecu les  wi th  lone  pairs .  This  s ame  p r o b l e m  is p r o b a b l y  r e spons ib le  for the  
unsa t i s f ac to ry  va lues  for the  d ipo le  m o m e n t s  of  wa te r  a n d  a m m o n i a .  

5.  C o n c l u s i o n  

The  cha rge - loca l i z a t i on  cr i te r ion ,  as well  as be ing  in tu i t ive ly  pleas ing,  has  
the a d v a n t a g e  over  m o r e  usua l  choices  of l ead ing  to o n e - e l e c t r o n  in tegra ls  wh ich  
can  be eva lua t ed  s imply  a n d  rapidly .  This  is a very des i rab le  p r o p e r t y  w h e n  large 
molecu les  are be i n g  cons idered .  Th i s  loca l i za t ion  c r i t e r ion  can  be easi ly ex tended  
to w a v e f u n c t i o n s  bu i l t  up  of  S la te r - type  a t o m i c  orbi ta ls .  
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Although the Frost model is rather crude, a number of results obtained from 
it may be useful for estimates of the relative magnitudes of values of molecular 
and bond properties. We have found that the orthonormal localized orbitals 
of the CH bond in methane and ethane are almost identical, and we would expect 
this similarity to persist in much larger saturated hydrocarbons. In fact, due to the 
simplicity of the Frost model and the ease with which the charge- or Frost- 
localization criteria can be applied, this may be the way to settle the theoretical 
question of transferability of bond properties between different molecular systems. 
The degree of variation of the parameters will indicate the degree of non- 
transferability. 

The absolute values of the first and second-order properties themselves are 
not in terribly good agreement with experiment. However for hydrocarbons 
we expect that the method used here will give average polarizability values which 
are fairly consistently about 75 % of the true value. For molecules, like water, 
with lone pairs, the situation is much more difficult but it would seem that the 
polarizability values are greatly underestimated and the dipole moments over- 
estimated. 
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